Paulo Gomes

PhD Graduate
PhD Degree in Physics
Field of expertise: Condensed Matter Physics

pjpg@campus.fct.unl.pt

Research Areas

Física da matéria condensada mole en
Física das interfaces e biomimética de membranas
Fenómenos de Adsorção de polímeros condutores, moléculas biológicas e moléculas com aplicações em óptica não-linear 
Efeito da radiação em biomoléculas e em membranas biomiméticas


PhD Thesis: "Characterization of molecular damage induced by UV photons and carbon ions on biomimetic heterostructures"


Advisers: Prof.ª Doutora Maria de Fátima Raposo and Prof. Doutor Paulo Ribeiro


The study of the effect of radiation on living tissues is a rather complex task to address mainly because they are made of a set of complex functional biological structures and interfaces. Particularly if one is looking for where damage is taking place in a first stage and what are the underlying reaction mechanisms. In this work a new approach is addressed to study the effect of radiation by making use of well identified molecular hetero-structures samples which mimic the biological environment. These were obtained by assembling onto a solid support deoxyribonucleic acid (DNA) and phospholipids together with a soft water-containing polyelectrolyte precursor in layered structures and by producing lipid layers at liquid/air interface with DNA as subphase. The effects of both ultraviolet (UV) radiation and carbon ions beams were systematically investigated in these heterostructures, namely damage on DNA by means vacuum ultraviolet (VUV), infrared (IR), X-Ray Photoelectron (XPS) and impedance spectroscopy. Experimental results revealed that UV affects furanose, PO2-, thymines, cytosines and adenines groups. The XPS spectrometry carried out on the samples allowed validate the VUV and IR results and to conclude that ionized phosphate groups, surrounded by the sodium counterions, congregate hydration water molecules which play a role of UV protection. The ac electrical conductivity measurements revealed that the DNA electrical conduction is arising from DNA chain electron hopping between base-pairs and phosphate groups, with the hopping distance equal to the distance between DNA base-pairs and is strongly dependent on UV radiation exposure, due loss of phosphate groups. Characterization of DNA samples exposed to a 4 keV C3+ ions beam revealed also carbon-oxygen bonds break, phosphate groups damage and formation of new species. Results from radiation induced damage carried out on biomimetic heterostructures having different compositions revealed that damage is dependent on sample composition, with respect to functional targeted groups and extent of damage. Conversely, LbL films of 1,2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) liposomes, alternated with poly(allylamine hydrochloride) (PAH) revealed to be unaffected, even by prolonged UV irradiation exposure, in the absence of water molecules. However, DPPG molecules were damaged by the UV radiation in presence of water with cleavage of C-O, C=O and –PO2- bonds. Finally, the study of DNA interaction with the ionic lipids at liquid/air interfaces revealed that electrical charge of the lipid influences the interaction of phospholipid with DNA. In the presence of DNA in the subphase, the effects from UV irrladiation were seen to be smaller, which means that ionic products from biomolecules degradation stabilize the intact DPPG molecules. This mechanism may explain why UV irradiation does not cause immediate cell collapse, thus providing time for the cellular machinery to repair elements damaged by UV.




Main publications

 


"Photoabsorption of biomolecules and radiation damage – studies in adenine films"
P. Limão-Vieira, A.M. Costa, S. Oliveira, P.J. Gomes, P.A. Ribeiro, M. Raposo;
J. Phys. Conf. Series (2007), 88(012004), 1-7


"Atomic force microscope characterization of PAH/PAZO multilayers"
Q. Ferreira, P.J. Gomes, Y. Nunes, M.J.P. Maneira, P.A. Ribeiro, M. Raposo;
Microelectronic Engineering Journal (2007), 84(3), 506-511


"Influence of ionic interactions on the photoinduced birefringence of PAZO films"
Q. Ferreira, P.J. Gomes, M. Raposo , J.A. Giacometti, O.N. Oliveira Jr. and P.A. Ribeiro;
Journal of Nanoscience and Nanothecnology (2007), 7(7), 2659–2666


"Mechanisms of Adsorption of an Azo-polyelectrolyte onto Layer-by-Layer Films"
Q. Ferreira, P.J. Gomes, M.J.P. Maneira, P.A. Ribeiro, M. Raposo;
Sensors and Actuators B: Chemical (2007), 126(1), 311-317


“Biomimetic Heterostructures for Radiation Damage Studies”
M. Raposo, P.J. Gomes, J.M.C. Lourenço, M.Coelho, S.V. Hoffmann, A.M. Botelho do Rego, R. W. McCullough, N. J. Mason, C. Lage, P. Limão-Vieira and P. A. Ribeiro
Proceedings of the Radiation Damage in Biomolecular Systems - RADAM´08, Debrecen, Hungry, 13th – 15th June 2008